

Journal of Electrical and Electronic Engineering
2020; 8(6): 127-136

http://www.sciencepublishinggroup.com/j/jeee

doi: 10.11648/j.jeee.20200806.11

ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online)

Shallow SqueezeNext: Real Time Deployment on
Bluebox2.0 with 272KB Model Size

Jayan Kant Duggal
*
, Mohamed El-Sharkawy

Internet of Things Collaboratory, Purdue School of Engineering and Technology, Indiana University Purdue University Indianapolis (IUPUI),

Indianapolis, USA

Email address:

*Corresponding author

To cite this article:
Jayan Kant Duggal, Mohamed El-Sharkawy. Shallow SqueezeNext: Real Time Deployment on Bluebox2.0 with 272KB Model Size. Journal

of Electrical and Electronic Engineering. Vol. 8, No. 6, 2020, pp. 127-136. doi: 10.11648/j.jeee.20200806.11

Received: November 30, 2020; Accepted: December 17, 2020; Published: December 31, 2020

Abstract: The significant challenges for deploying CNNs/DNNs on ADAS are limited computation and memory resources with

very limited efficiency. Design space exploration of CNNs or DNNS, training and testing DNN from scratch, hyper parameter

tuning, implementation with different optimizers contributed towards the efficiency and performance improvement of the Shallow

SqueezeNext architecture. It is also computationally efficient, inexpensive and requires minimum memory resources. It achieves

better model size and speed in comparison to other counterparts such as AlexNet, VGGnet, SqueezeNet, and SqueezeNext, trained

and tested from scratch on datasets such as CIFAR-10 and CIFAR-100. It can achieve the least model size of 272KB with a model

accuracy of 82%, a model speed of 9 seconds per epoch, and tested on the CIFAR-10 dataset. It achieved the best accuracy of

91.41%, best model size of 0.272 MB, and best model speed of 4 seconds per epoch. Memory resources are of high importance

when it comes down to real time system or platforms because usually the memory is quite limited. To verify that the Shallow

SqueezeNext can be successfully deployed on a real time platform, bluebox2.0 by NXP was used. Bluebox2.0 deployment of

Shallow SqueezeNext architecture achieved a model accuracy of 90.50%, 8.72MB model size and 22 seconds per epoch model

speed. There is another version of the Shallow SqueezeNext which performed better that attained a model size of 0.5MB with model

accuracy of 87.30% and 11 seconds per epoch model speed trained and tested from scratch on CIFAR-10 dataset.

Keywords: Deep Neural Network (DNN), Design Space Exploration (DSE), Pytorch Implementation,

Real-time Deployment, RTMaps, SqueezeNext, Shallow SqueezeNext

1. Introduction

DNN model performance is very critical to ADAS and

UAV applications safety. DNNs overcame the limitations of

its traditional counterparts which are more memory and

computationally expensive algorithms. Here, DNN model

performance refers to model accuracy, model memory size,

and model speed. Due to more intensive DSE of CNNs in

small and macro-CNN architectures, especially for ADAS or

real-time embedded systems [10], new architectures were

introduced such as SqueezeNet [1] and SqueezeNext [2]

baseline architectures, efficient and better than the traditional

architectures [8, 10, 15]. DNNs are usually trained and tested

on some widely available datasets such as MNIST, CIFAR-10,

COCO, ImageNet, etc. DNNs usually comprise of four

elemental layers such as activation, convolution, pooling, and

fully connected layers. The convolution operation is performed

with striding and padding values, the default value of striding

is 1 and the padding used is zero-padding to maintain the

spatial dimension of the DNN. Different optimizers [7] and

learning rate scheduling methods are implemented. To

improve DNN architectures, we perform Design Space

Exploration (DSE) of DNNs, architecture modification,

hyperparameter tuning, and tweaking [4, 5, 11, 15-18]. In this

paper, the proposed architecture is implemented on datasets

such as CIFAR-100 and CIFAR-10 [9], initially, trained and

tested on a GPU and later, was deployed on Bluebox2.0 [11,

16], real time embedded platform by NXP. This research

complies Design Space Exploration of DNNs for Shallow

SqueezeNext architecture with the help of insights from the

following research papers [16-18]. In the end, we deploy the

Shallow SqueezeNext with the help of RTMaps [19] on the

128 Jayan Kant Duggal and Mohamed El-Sharkawy: Shallow SqueezeNext: Real Time Deployment on

Bluebox2.0 with 272KB Model Size

real time platform, bluebox2.0 by NXP.

2. Literature Review

2.1. SqueezeNet

SqueezeNet architecture [1] comprises of convolutions

layers, max pooling layers, fire modules, ReLU and ReLU in

place activations, and softmax activation layers. Fire module

is the mainstay of SqueezeNet architecture. This module

consists of these two following layers, one squeeze layer; s2

(1x1)) and two expand layers; e1 (1x1) and e3 (3x3). They are

further, responsible for model size or model parameter

reduction and better model speed performance. The three key

design strategies implemented to develop this architecture:

1) Replacing the 3x3 convolution layers with 1x1

convolution layers.

2) Reducing number of the input channel to 3x3

convolution layers.

3) Down-sampling or perform max pooling late down in

the CNN network.

In comparison, to VGG architecture, it performs better in

terms of model size and speed. It reduced the VGG

architecture model size from 385MB down to the model size

of 0.5MB with an accuracy tradeoff. Additionally, there is a

colossal decrease in the parameter count, further, leading to a

better model speed for processing per epoch of the

SqueezeNet model.

2.2. SqueezeNext

SqueezeNext baseline architecture [2] consists of the

following key factors:

1) Better channel reduction by incorporating a two-stage

squeeze module subsequently reducing parameters

significantly with the help of 3x3 convolutions.

2) It uses separable 3x3 convolutions for model size

reduction, and removal of 1x1 convolution after the

squeeze module.

3) It incorporates an element-wise addition skip connection

identical to ResNet.

Figure 1. Four stage [6, 6, 8, 1] baseline SqueezeNext configuration for CIFAR-10.

Figure 1. illustrates a modified version of the baseline

SqueezeNext architecture implemented in Pytorch framework

which is trained and tested from scratch on datasets such as

CIFAR-100 and CIFAR-10. The baseline SqueezeNext is

formed by four stage implementation of bottleneck modules,

skip connections, ReLU and ReLU (in-place) layers, batch

normalization, spatial resolution layer, max pooling layers,

and a fully connected layer. Within baseline SqueezeNext,

bottleneck modules are majorly responsible for the rigorous

parameters’ reduction [14-16]. It comprises of the white block

(Figure 1. grey block), the first convolution for the input

channel taking in a 3-channel feature map. The consecutive

output of the first convolution becomes the input for the

subsequent four- stage configuration implementation of the

architecture, baseline SqueezeNext. The sequence of different

colored blocks (dark blue, blue, orange, and yellow blocks) in

Figure 1. succeeding the first convolution (white block)

illustrates the four-stage configuration implementation

belonging to Shallow SqueezeNext which depicts low level,

medium level, and high-level features, respectively. They also

depict a change in the resolution of the input feature map in

the baseline SqueezeNext architecture. The fact here, is that a

smaller number of initial blocks, low-level features holds the

redundant information in contrast to mid or high-level features

later down the CNN which carries most of the useful feature

map information data.

2.3. Modified SqueezeNext

Modified SqueezeNext architecture is developed for the

purpose of this research for unbiased comparison between the

proposed Shallow SqueezeNext architecture and Modified

SqueezeNext implementation based on Pytorch framework. It

also assisted in providing great insights for the possible

domains of improvement within the baseline architecture and

to further, explore the baseline SqueezeNext. Modified

SqueezeNext architecture was built out of the basic block

illustrated in the Figure 2 (right), which are arranged in a

structural form of two block structures, represented in Figure 3.

(left) and (right). There is another difference here from the

original SqueezeNext architecture, both DNN models

developed with the help of the mentioned below basic blocks

(Figure 2.) were implemented on Pytorch framework instead

of Caffe.

 Journal of Electrical and Electronic Engineering 2020; 8(6): 127-136 129

Figure 2. (Left) Basic block for baseline SqueezeNext, (Right) Modified SqueezeNext basic block.

Figure 3. (Left) Modified SqueezeNext first block structure, (Right) Modified SqueezeNext second block structure.

Figure 2. (right) illustrates the fundamental basic building

block for the Modified SqueezeNext trained and tested on

Cifar-10 from scratch implemented in Pytorch framework. It

consists of convolution (1x1), regular batch normalization and

ReLU (in-place) layers excluding the scaling layer.

In Figure 3, initially, both block structures (left & right)

begin with an output of input data being fed into the Figure 2.

right basic block (Modified SqueezeNext basic block) which

further fed the input to the max pooling layer. The block

structure on the right, depicts the first individual initial blocks

implementation of the four-stage configuration. It represents,

the first dark blue, blue, orange and the last yellow block of

the four-stage configuration.

The block structure on the left, forms each of the remaining

blocks of the four-stage configuration of the Modified

SqueezeNext. For the fair and unbiased comparison with the

proposed architecture, all the architectures are trained and

tested in Pytorch only with datasets such as CIFAR-100 and

CIFAR-10, respectively.

2.4. Architecture Tuning

A recently introduced optimizer and some other activation

functions [4] had been used for experiments on the proposed

Shallow SqueezeNext Architecture, further, fine tuning and

tweaking the proposed architecture.

2.4.1. Adabound

Adabound [12], a newly introduced optimizer which

employs bounds on their learning rates dynamically and

achieving a transition. It shows good results with the benefits

of adaptive methods. The lower and upper bound of it will

adjust after running the CNN/DNN for several epochs (in

proposed architecture case it was between 60 to 90 epochs) so

that it transforms from Adam to SGD. The default

hyperparameters for it are learning rate of 0.001, beta1 = 0.9

and beta2 = 0.999. It was seen that the optimizers such as

adagrad, adam, and rmsgrad seem to perform better in training,

initially. When the learning rates are decayed, SGD begins to

outperform. But, in the case of adabound, it converges fast and

achieves a bit higher accuracy than SGD.

2.4.2. Rectified Linear Units (ReLU) in Place

RELU-in place is not a linear activation function layer, but

it provides similar advantages as of ReLU, additionally with a

better performance. It modifies the input directly without

allocating any additional output. It is observed to save some

amount of memory in comparison to RELU. It cannot be used

all the time as it needs a valid operation or valid use case.

2.4.3. Exponential Linear Units (ELU) in Place

ELU is an activation function, converging to zero cost faster

130 Jayan Kant Duggal and Mohamed El-Sharkawy: Shallow SqueezeNext: Real Time Deployment on

Bluebox2.0 with 272KB Model Size

and then, producing better and more accurate results. The

curve for this activation function will smooth over time,

slowly. It also has another special operation case, that is, ELU

(in-place). All in-place are observed to save memory, further

not allocating any additional outputs which is huge benefactor

for a CNN/DNN model.

2.4.4. BlueBox2.0 by NXP

Bluebox2.0 [19] is the second version of real time

deployment platform for autonomous driving applications. It

provides automotive reliability, functional safety, and freedom

to implement the algorithms on frameworks such as Pytorch,

TensorFlow and Keras. The recent edition of bluebox2.0

incorporates three essential components are S32V234 (vision

processor), LS2084A (embedded compute processor), and

S32R27 (radar). It is operated with the help of Linux BSP

image on a 16GB microSD card.

Figure 4. Shallow SqueezeNext basic block; the fundamental building block for the architecture.

For deployment of the CNNs/DNNs or the proposed

Shallow SqueezeNext architecture it makes use of RTMaps

framework [19], another tool used with bluebox2.0 for the

architecture deployment.

RTMaps: Real-time Multisensor applications is easy to use,

efficient and robust real-time embedded systems. It is

designed for developing multimodal based applications,

testing, benchmarking, validation, and execution. It consists

of four key modules that are RTMaps Runtime Engine,

RTMaps Component Library, RTMaps Studio, RTMaps

Embedded. The connection between the computer running

RTMaps and the remote studio RTMaps on bluebox2.0 can be

accessed via a static TCP/IP connection.

Figure 5. Shallow SqueezeNext connection between a PC and bluebox2.0

real-time platform with the help of RTMaps via TCP/IP.

Architecture Deployment: To deploy a Pytorch code with

the help of RTMaps for bluebox2.0, it must consist of three

key functions to make it work in RTMaps. Three function

definitions are birth (), core (), and death () [16, 19]. Pytorch

deployment with the help of RTMaps on bluebox2.0 for the

Shallow SqueezeNext architecture is shown in Figure 4. The

connection between the RTMaps studio with remote

connection to embedded platform on a PC and real-time

platform with Ubuntu BSP image, bluebox2.0 by NXP can

accessed via TCP/IP, illustrated in Figure 5.

3. Shallow SqueezeNext

Shallow SqueezeNext architecture is a shallow (refers to not too

deep or small DNN models) and compact DNN architecture. The

motivational architectures behind this proposed architecture were

SqueezeNext [2], SqueezeNet [1], and MobileNet [3] architectures.

During the research, another architecture was developed for better

accuracy with model size tradeoff, that is basically a deeper or

more comprehensive version of it, High Performance

SqueezeNext [17]. Shallow SqueezeNext architecture is made up

of bottleneck modules [2] further, consisting of the basic blocks

mentioned below in Figure 6. These basic blocks are arranged in a

four-stage configuration implementation (Figure 7.) followed by a

spatial resolution layer, dropout layer with probability; p equal to

0.3, average pooling, and a fully connected layer.

Figure 6. Fundamental basic block for Shallow SqueezeNext architecture.

 Journal of Electrical and Electronic Engineering 2020; 8(6): 127-136 131

Figure 7. Architecture illustration for the proposed Shallow SqueezeNext.

It is based on the following important strategies:

1) Managing depth and width scaling with resolution and

width multipliers.

2) Use of only in-place operations in all layers except in

the layers where we have a gradient change operation.

Carefully, placing it between ELU in-place and batch

normalization layer (Figure 6).

3) Incorporating an element-wise addition skip connection

to avoid vanishing gradient problem.

4) Addition of a drop out layer at the end of four stage

configuration after the average pooling layer.

5) Reduction of max-pooling layers and replacing them

with average pooling layers. As observed in Figure 7,

average pooling layer after drop-out layer.

The architecture implements the strategy of training and

testing different optimizers. Figure 6. represents the basic

block which is the fundamental building for the architecture

with following layers convolution (1x1), ELU (in-place) [13],

and batch normalization. Shallow SqueezeNext basic blocks

together form bottleneck modules, illustrated in Figure 8.

(left), these bottleneck modules are arranged in a four-stage

configuration as shown in Figure 8 (right).

The basic blocks in Figure 6. and bottleneck modules

four-stage configuration (Figure 8.) together combines to

build and form the proposed DNN architecture, Shallow

SqueezeNext architecture (Figure 7). Figure 8. (left)

illustrates bottleneck module made from basic block (refer

Figure 6.) combined with different types of convolution

layers specifically, such as, 1x1, 3x1, and 1x3 convolutions,

respectively.

Figure 8. (right) illustrates the detailed proposed Shallow

SqueezeNext with (1 2 8 1) four-stage configuration

depicting bottleneck modules representing one grey colored

bottleneck module in first stage, two blue colored bottleneck

modules in second stage, four orange colored bottleneck

modules in third stage and finally, one green bottleneck

module in the fourth stage.

Figure 8. (Left) Bottleneck module depicting different convolutions and skip connection, (Right) Four stage [1, 2, 8, 1] configuration implementation of

Shallow SqueezeNext depicting the left bottleneck modules.

3.1. Resolution Multiplier

Resolution multiplier [3] is the first hyper-parameter used

to reduce the computational resource usage belonging to a

CNN/DNN. It is another important parameter which have a

significant effect on the parameter reduction and apparently,

effect the scaling size of the model. This is responsible for

reduced size and parameter for the Shallow SqueezeNext

architecture.

132 Jayan Kant Duggal and Mohamed El-Sharkawy: Shallow SqueezeNext: Real Time Deployment on

Bluebox2.0 with 272KB Model Size

3.2. Width Multiplier

Width multiplier [3] is the second hyper-parameter used to

develop small, compact, and less expensive DNN models in

terms of computation and memory resource usage. It

develops a uniformly thin deep neural network at each layer,

further, helping to reduce the computational expenses and

number of parameters by a power of two of the width

multiplier term.

4. Results

4.1. Shallow SqueezeNext Results

Shallow SqueezeNext architecture was implemented with

the approaches mentioned in the literature review section,

leading to various number of models of the proposed

architecture. The model size ranges from 4.2MB to a small

size of 115KB or 0.115MB as shown in Table 3 with mostly

model accuracy above 80% and model speed of approximately

under 15 seconds per epoch for the experimental models. In

the following tables, only few of the several better model’s

results out of total 600 models or experiments are being

discussed below. The nomenclature for the proposed Shallow

SqueezeNext models and results from the tables within this

section represents Shallow SqueezeNext architecture version

name followed by resolution multiplier, and width multiplier.

We can infer from Table 1. that a better reduced Shallow

SqueezeNext model size is achieved that is 272KB or 0.272

MB, (Shallow SqueezeNext-06-0.4x model) from the

9.525MB, baseline SqueezeNext model size. Shallow

SqueezeNext-06-0.4x model is 35x smaller than

SqueezeNext-23-2x, 10x smaller than SqueezeNext-23-1x

and approximately, 11x smaller than SqueezeNet v1.0 and

SqueezeNet v1.1.

Table 1. Comparison with baseline SqueezeNet architecture and baseline SqueezeNext architecture.

Model Accuracy% Model Size (MB) Model speed (sec)

Baseline SqueezeNet-v1.0 79.59 3.013 04

SqueezeNet-v1.1 77.55 2.961 04

Baseline SqueezeNext-23-1x 87.15 2.586 19

SqueezeNext-23-2x 90.48 9.525 22

Shallow SqueezeNext-14-1.5x 91.41 8.720 22

Shallow SqueezeNext-21-0.2x 90.29 1.814 27

Shallow SqueezeNext-12-1.0x 88.46 0.504 19

Shallow SqueezeNext-06-0.4x 81.97 0.272 04

Shallow SqueezeNext-06-0.2x 81.86 0.273 04

+All results are 3 average runs implemented along with SGD optimizer with Nesterov plus momentum and LR equal to 0.01

Implementation of in-place activation functions,

elimination of the extra max-pooling layers and with the

introduction of the suitable resolution and width multipliers

made the proposed architecture more compact, efficient, and

flexible. With the change of resolution and width multiplier,

the proposed Shallow SqueezeNext architecture can be

deployed with better accuracy but with a trade-off of memory

size and memory speed. Shallow SqueezeNext

hyperparameters for each variation of model was saved with a

Pytorch function, save (). The checkpoint is then, loaded with

the help of Pytoch function, load () which is subsequently

utilized for the training the architecture. This step of saving

and loading the checkpoint is critical for the success of the

Shallow SqueezeNext because not all hyper-parameters are

saved and loaded but just the important ones. The generated

model checkpoint file size is used to determine the model size

and final average accuracy. This checkpoint file is again

utilized for the testing Shallow SqueezeNext architecture

deployment on Bluebox2.0 by NXP [11, 16].

Table 2. Different resolution multipliers implemented on Shallow SqueezeNext [16, 18].

Model Acc.% Mod. Size (MB) Mod. Speed (seconds) Resol (R)

Shallow SqueezeNext-06-0.2x 82.47 0.296 13 1111

Shallow SqueezeNext-06-2x 89.35 4.210 21 1111

Shallow SqueezeNext-08-2x 77.48 2.961 04 1221

Shallow SqueezeNext-10-1x 87.63 2.560 23 1331

Shallow SqueezeNext-12-2x 87.96 2.563 19 1441

Shallow SqueezeNext-14-1x 82.44 0.370 07 1551

Shallow SqueezeNext-14-1.5x 91.41 8.720 22 1281

Shallow SqueezeNext-16-1x 82.86 1.240 08 1661

Shallow SqueezeNext-21-0.2x 90.29 1.814 27 2 2 14 1

*Acc. – Accuracy; Mod. Size – Model Size; Mod. Speed – Model Speed; Resol- Resolution multiplier for each of four-stage configuration.

 Journal of Electrical and Electronic Engineering 2020; 8(6): 127-136 133

Table 3. Different width multipliers implemented with Shallow SqueezeNext [16, 18].

Model Acc.% Size (MB) Speed (sec) Width (x) W

Shallow SqueezeNext-06-0.125x 66.4 0.115 07 0.125

Shallow SqueezeNext-06-0.15x 72.2 0.141 08 0.150

Shallow SqueezeNext-06-0.2x 82.5 0.296 13 0.200

Shallow SqueezeNext-06-0.3x 77.9 0.196 08 0.300

Shallow SqueezeNext-12-0.4x 87.3 0.485 13 0.400

Shallow SqueezeNext-14-0.5x 89.0 0.772 17 0.500

Shallow SqueezeNext-06-0.6x 84.6 0.480 10 0.600

Shallow SqueezeNext-07-0.7x 88.1 0.704 12 0.700

Shallow SqueezeNext-06-0.8x 87.7 0.774 12 0.800

Shallow SqueezeNext-06-0.9x 86.3 0.950 12 0.900

Shallow SqueezeNext-12-1.0x 88.5 0.504 19 1.000

Shallow SqueezeNext-06-1.5x 82.5 2.442 17 1.500

Shallow SqueezeNext-06-2.0x 89.4 4.201 21 2.000

+Acc. – Accuracy; Size – Model Size; Speed – Model Speed; Width- Width times multiplication for each of the four-stage configuration.

Table 4. Different dropout layer probabilities with Shallow SqueezeNext [16, 18].

Model Acc.% Mod. Size (MB) Mod. Speed (sec) Dropout (p)

Shallow SqueezeNext-06-0.2x-v1 80.82 0.273 04 0.1

Shallow SqueezeNext-06-0.2x-v1 81.44 0.273 04 0.2

Shallow SqueezeNext-06-0.2x-v1 81.87 0.273 04 0.3

Shallow SqueezeNext-06-0.2x-v1 81.86 0.273 04 0.4

Shallow SqueezeNext-06-0.2x-v1 81.70 0.273 04 0.5

+Acc. – Accuracy; Mod. Size – Model Size; Mod. Speed – Model Speed; Drop out (p)- Resolution multiplier for each of four-stage configuration.

The benefit of this proposed architecture is that it can be

readily implemented on real-time systems, BlueBox2.0 by

NXP [16, 19] with limited memory with the help of dropout

layer [6]. Table 4. illustrates the results attained with the

different values of dropout layer probabilities for Shallow

SqueezeNext justifying dropout with probability value, p = 0.3

or 0.4 is a better default value for the proposed architecture.

Table 5. represents the additional results for the Shallow

SqueezeNext [9].

Table 5. Additional results for Shallow SqueezeNext with CIFAR-10 [16, 18].

Model Acc.% Mod. Size (MB) Mod. Speed (sec) R, W

Shallow SqueezeNext-14-1.5x-v1 91.41 8.720 22 1281, 1.5x

Shallow SqueezeNext-21-0.2x-v1 90.27 1.8.14 27 2 2 14 1, 0.2

Shallow SqueezeNext-06-0.575x-v1 81.80 0.449 06 1111,0.575

Shallow SqueezeNext-06-0.4x-v1 81.97 0.272 09 1111,0.4

Shallow SqueezeNext-09-0.5x-v1 87.73 0.531 11 1141,0.5

+Acc. – Accuracy; Mod. Size – Model Size; Mod. Speed – Model Speed; R, W- Resolution multiplier, Width multiplier for each of four-stage configuration.

Table 6. Shallow SqueezeNext Results trained and tested with CIFAR-100 from scratch [16, 18].

Model Acc.% Size (MB) Speed (sec) Optimizer (x)

Shallow SqueezeNext-14-1.0x 66.12 6.90 20 Adabound

Shallow SqueezeNext-09-0.5x 58.27 1.40 11 Adam

Shallow SqueezeNext-09-0.5x 33.73 1.40 13 Adamax

Shallow SqueezeNext-09-0.5x 77.9 1.00 09 Adagrad

Shallow SqueezeNext-09-0.5x 87.3 1.40 12 Adabound

Shallow SqueezeNext-09-0.5x 89.0 1.40 12 Adadelta

Shallow SqueezeNext-09-0.5x 84.6 1.00 09 ASGD

Shallow SqueezeNext-09-0.5x 88.1 1.40 11 RMSprop

Shallow SqueezeNext-09-0.5x 87.7 1.40 25 Rprop

Shallow SqueezeNext-09-0.5x 89.4 1.10 08 SGD with momentum and nestrov

+Acc. – Accuracy; Size – Model Size; Speed – Model Speed; Optimizer- Optimizer implemented with the proposed architecture.

134 Jayan Kant Duggal and Mohamed El-Sharkawy: Shallow SqueezeNext: Real Time Deployment on

Bluebox2.0 with 272KB Model Size

(a)

(b)

(c)

Figure 9. (a) SqueezeNet accuracy baseline architecture, (b) SqueezeNext accuracy baseline architecture, (c) Shallow SqueezeNext accuracy proposed.

 Journal of Electrical and Electronic Engineering 2020; 8(6): 127-136 135

In Table 6, all results have a unique behavior illustrating the

effect of different optimizers [7] and ELU [13]

implementation on the proposed architecture.

Also, from the above-mentioned tables the inference can be

that deep residual layer [4, 8, 13, 15] effects the tradeoff

between model accuracy, model speed, and size of the proposed

Shallow SqueezeNext architecture. Figure 9. (a-c) illustrates

the baseline SqueezeNet, baseline SqueezeNext and the

proposed architecture Shallow SqueezeNext accuracies trained

on the CIFAR-10 dataset. The graph comparison between the

Figures 9 (a), (b) & (c) illustrates, less overfitting in Figure 9 (c)

depicted by the empty space or gap between training and

validation curve in comparison to (a) & (c). These curves

approach to 1.0 quickly. This validates the proposed

architecture performs better in terms of model parameters

(model accuracy, model speed and model size) than the

SqueezeNext and SqueezeNet baseline model which is trained

and tested from scratch on CIFAR-10 and CIFAR-100 datasets.

4.2. Bluebox2.0 Implementation Results

The Shallow SqueezeNext architecture is finally deployed

on bluebox2.0 by NXP to verify and validate the efficiency

and integrity of the Shallow SqueezeNext architecture [16].

The Pytorch generated checkpoint files were trained on

datasets such as CIFAR-100 and CIFAR-10 with the help of

RTX 2080ti GPU and then, deployed and tested on bluebox2.0

by NXP. The deployment of the Shallow SqueezeNext is

shown in Figure 4. The result comparison of the Shallow

SqueezeNext is shown below in Table 7.

Figure 10. illustrates the Shallow SqueezeNext deployment

results attained by training the architecture on RTX 2080ti

GPU with CIFAR-10 dataset from scratch and test the

architecture by deploying it with the help of RTMaps on a

real-time development platform, bluebox2.0 by NXP.

Table 7. Bluebox2.0 deployment results for Shallow SqueezeNext [16, 18].

Model Acc.% Mod. Size (MB) Mod. Speed (sec)

Squeezed CNN (SqueezeNet implementation) 79.30 12.9 11

Shallow SqueezeNext-14-1.5x 90.50 8.72 22

Shallow SqueezeNext-06-0.575x 81.50 0.449 06

Shallow SqueezeNext-09-0.5 87.30 0.531 11

Figure 10. Shallow SqueezeNext deployment on real time platform Bluebox2.0.

5. Conclusion

In this paper, based on the insights from the existing

CNNs/DNNs and methods such as fine hyperparameter tuning

(refers to implementation of different optimizer with step size

decay learning rate scheduling, using momentum and nestrov

with SGD optimizer, tuning the parameters for normalization

136 Jayan Kant Duggal and Mohamed El-Sharkawy: Shallow SqueezeNext: Real Time Deployment on

Bluebox2.0 with 272KB Model Size

and data preprocessing), training the proposed architecture

from scratch with no transfer learning, using comparatively

small datasets, and architecture modifications the proposed

Shallow SqueezeNext architecture is introduced. It further,

explores the DSE of CNNs, optimizing it with the help of all

the different activation functions, in-place functions,

introduction of ELUs and optimizers. Shallow SqueezeNext

has 120x fewer parameters than AlexNet architecture and

achieved a reduced, 0.5MB model size. It has further, 600x

smaller model size than AlexNet architecture without

compression. The results show the tradeoff between the

proposed model speed, size, and accuracy. About different

optimizers, SGD and Adabound optimizers outperformed

their counterparts. With a minimum model size of 0.272MB

and model accuracy 81.97% it is expected to be deployed

efficiently on ADAS applications. The deployment results for

Shallow SqueezeNext trained and tested on Cifar-10 attained a

model accuracy of 90.50%, 8.72 MB model size and 22

seconds per epoch model speed. Additionally, another model

variation of Shallow SqueezeNext achieved a reduced model

size of 0.531 MB with 87.30% model accuracy. In the research,

the focus is laid on DSE of DNNs, hyper-parameter optimizer,

training and testing the Shallow SqueezeNext architecture

from scratch without any transfer learning in contrast to the

conventional approach.

References

[1] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally,
W. J. and Keutzer, K., 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and< 0.5 MB model size.
arXiv preprint arXiv: 1602.07360.

[2] Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P., Zhao,
S. and Keutzer, K., 2018. Squeezenext: Hardware-aware neural
network design. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops (pp.
1638-1647).

[3] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M. and Adam, H., 2017.
Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv: 1704.04861.

[4] Ludermir, T. B., Yamazaki, A. and Zanchettin, C., 2006. An
optimization methodology for neural network weights and
architectures. IEEE Transactions on Neural Networks, 17 (6),
pp. 1452-1459.

[5] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J.,
Catanzaro, B. and Shelhamer, E., 2014. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv: 1410.0759.

[6] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and
Salakhutdinov, R., 2014. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine
learning research, 15 (1), pp. 1929-1958.

[7] Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv: 1609.04747, 2016.

[8] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V. and Rabinovich, A., 2015. Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp.
1-9).

[9] Krizhevsky, A., Nair, V. and Hinton, G., 2010. Cifar-10
(canadian institute for advanced research). URL http://www. cs.
toronto. edu/kriz/cifar. html, 5.

[10] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z.,
2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2818-2826).

[11] Jayan Kant Duggal and Mohamed El-Sharkawy, “Shallow
SqueezeNext Architecture Implementation on Bluebox2.0,”
Transactions on Computational Science and Computational
Intelligence, Springer, 2020.

[12] Luo, L., Xiong, Y., Liu, Y. and Sun, X., 2019. Adaptive
gradient methods with dynamic bound of learning rate. arXiv
preprint arXiv: 1902.09843.

[13] Clevert, D. A., Unterthiner, T. and Hochreiter, S., 2015. Fast
and accurate deep network learning by exponential linear units
(elus). arXiv preprint arXiv: 1511.07289.

[14] Simonyan, K. and Zisserman, A., 2014. Very deep
convolutional networks for large-scale image recognition.
arXiv preprint arXiv: 1409.1556.

[15] Shah, A., Kadam, E., Shah, H., Shinde, S. and Shingade, S.,
2016, September. Deep residual networks with exponential
linear unit. In Proceedings of the Third International
Symposium on Computer Vision and the Internet (pp. 59-65).

[16] Duggal, Jayan Kant. Design Space Exploration of DNNs for
Autonomous Systems. Diss. Purdue University Graduate
School, 2019.

[17] Duggal, Jayan Kant, and Mohamed El-Sharkawy. "High
Performance SqueezeNext for CIFAR-10." 2019 IEEE
National Aerospace and Electronics Conference (NAECON).
IEEE, 2019.

[18] Duggal, Jayan Kant, and Mohamed El-Sharkawy. "Shallow
SqueezeNext: An Efficient \& Shallow DNN." 2019 IEEE
International Conference of Vehicular Electronics and Safety
(ICVES). IEEE, 2019.

[19] Venkitachalam, S., Manghat, S. K., Gaikwad, A. S., Ravi, N.,
Bhamidi, S. B. S. and El-Sharkawy, M., 2018. Realtime
Applications with RTMaps and Bluebox 2.0. In Proceedings on
the International Conference on Artificial Intelligence (ICAI)
(pp. 137-140). The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied
Computing (WorldComp).

