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Abstract: The significant challenges for deploying CNNs/DNNs on ADAS are limited computation and memory resources with 

very limited efficiency. Design space exploration of CNNs or DNNS, training and testing DNN from scratch, hyper parameter 

tuning, implementation with different optimizers contributed towards the efficiency and performance improvement of the Shallow 

SqueezeNext architecture. It is also computationally efficient, inexpensive and requires minimum memory resources. It achieves 

better model size and speed in comparison to other counterparts such as AlexNet, VGGnet, SqueezeNet, and SqueezeNext, trained 

and tested from scratch on datasets such as CIFAR-10 and CIFAR-100. It can achieve the least model size of 272KB with a model 

accuracy of 82%, a model speed of 9 seconds per epoch, and tested on the CIFAR-10 dataset. It achieved the best accuracy of 

91.41%, best model size of 0.272 MB, and best model speed of 4 seconds per epoch. Memory resources are of high importance 

when it comes down to real time system or platforms because usually the memory is quite limited. To verify that the Shallow 

SqueezeNext can be successfully deployed on a real time platform, bluebox2.0 by NXP was used. Bluebox2.0 deployment of 

Shallow SqueezeNext architecture achieved a model accuracy of 90.50%, 8.72MB model size and 22 seconds per epoch model 

speed. There is another version of the Shallow SqueezeNext which performed better that attained a model size of 0.5MB with model 

accuracy of 87.30% and 11 seconds per epoch model speed trained and tested from scratch on CIFAR-10 dataset.  

Keywords: Deep Neural Network (DNN), Design Space Exploration (DSE), Pytorch Implementation,  

Real-time Deployment, RTMaps, SqueezeNext, Shallow SqueezeNext 

 

1. Introduction 

DNN model performance is very critical to ADAS and 

UAV applications safety. DNNs overcame the limitations of 

its traditional counterparts which are more memory and 

computationally expensive algorithms. Here, DNN model 

performance refers to model accuracy, model memory size, 

and model speed. Due to more intensive DSE of CNNs in 

small and macro-CNN architectures, especially for ADAS or 

real-time embedded systems [10], new architectures were 

introduced such as SqueezeNet [1] and SqueezeNext [2] 

baseline architectures, efficient and better than the traditional 

architectures [8, 10, 15]. DNNs are usually trained and tested 

on some widely available datasets such as MNIST, CIFAR-10, 

COCO, ImageNet, etc. DNNs usually comprise of four 

elemental layers such as activation, convolution, pooling, and 

fully connected layers. The convolution operation is performed 

with striding and padding values, the default value of striding 

is 1 and the padding used is zero-padding to maintain the 

spatial dimension of the DNN. Different optimizers [7] and 

learning rate scheduling methods are implemented. To 

improve DNN architectures, we perform Design Space 

Exploration (DSE) of DNNs, architecture modification, 

hyperparameter tuning, and tweaking [4, 5, 11, 15-18]. In this 

paper, the proposed architecture is implemented on datasets 

such as CIFAR-100 and CIFAR-10 [9], initially, trained and 

tested on a GPU and later, was deployed on Bluebox2.0 [11, 

16], real time embedded platform by NXP. This research 

complies Design Space Exploration of DNNs for Shallow 

SqueezeNext architecture with the help of insights from the 

following research papers [16-18]. In the end, we deploy the 

Shallow SqueezeNext with the help of RTMaps [19] on the 
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real time platform, bluebox2.0 by NXP.  

2. Literature Review 

2.1. SqueezeNet 

SqueezeNet architecture [1] comprises of convolutions 

layers, max pooling layers, fire modules, ReLU and ReLU in 

place activations, and softmax activation layers. Fire module 

is the mainstay of SqueezeNet architecture. This module 

consists of these two following layers, one squeeze layer; s2 

(1x1)) and two expand layers; e1 (1x1) and e3 (3x3). They are 

further, responsible for model size or model parameter 

reduction and better model speed performance. The three key 

design strategies implemented to develop this architecture: 

1) Replacing the 3x3 convolution layers with 1x1 

convolution layers. 

2) Reducing number of the input channel to 3x3 

convolution layers. 

3) Down-sampling or perform max pooling late down in 

the CNN network. 

In comparison, to VGG architecture, it performs better in 

terms of model size and speed. It reduced the VGG 

architecture model size from 385MB down to the model size 

of 0.5MB with an accuracy tradeoff. Additionally, there is a 

colossal decrease in the parameter count, further, leading to a 

better model speed for processing per epoch of the 

SqueezeNet model. 

2.2. SqueezeNext 

SqueezeNext baseline architecture [2] consists of the 

following key factors: 

1) Better channel reduction by incorporating a two-stage 

squeeze module subsequently reducing parameters 

significantly with the help of 3x3 convolutions. 

2) It uses separable 3x3 convolutions for model size 

reduction, and removal of 1x1 convolution after the 

squeeze module. 

3) It incorporates an element-wise addition skip connection 

identical to ResNet.

 

Figure 1. Four stage [6, 6, 8, 1] baseline SqueezeNext configuration for CIFAR-10. 

Figure 1. illustrates a modified version of the baseline 

SqueezeNext architecture implemented in Pytorch framework 

which is trained and tested from scratch on datasets such as 

CIFAR-100 and CIFAR-10. The baseline SqueezeNext is 

formed by four stage implementation of bottleneck modules, 

skip connections, ReLU and ReLU (in-place) layers, batch 

normalization, spatial resolution layer, max pooling layers, 

and a fully connected layer. Within baseline SqueezeNext, 

bottleneck modules are majorly responsible for the rigorous 

parameters’ reduction [14-16]. It comprises of the white block 

(Figure 1. grey block), the first convolution for the input 

channel taking in a 3-channel feature map. The consecutive 

output of the first convolution becomes the input for the 

subsequent four- stage configuration implementation of the 

architecture, baseline SqueezeNext. The sequence of different 

colored blocks (dark blue, blue, orange, and yellow blocks) in 

Figure 1. succeeding the first convolution (white block) 

illustrates the four-stage configuration implementation 

belonging to Shallow SqueezeNext which depicts low level, 

medium level, and high-level features, respectively. They also 

depict a change in the resolution of the input feature map in 

the baseline SqueezeNext architecture. The fact here, is that a 

smaller number of initial blocks, low-level features holds the 

redundant information in contrast to mid or high-level features 

later down the CNN which carries most of the useful feature 

map information data. 

2.3. Modified SqueezeNext 

Modified SqueezeNext architecture is developed for the 

purpose of this research for unbiased comparison between the 

proposed Shallow SqueezeNext architecture and Modified 

SqueezeNext implementation based on Pytorch framework. It 

also assisted in providing great insights for the possible 

domains of improvement within the baseline architecture and 

to further, explore the baseline SqueezeNext. Modified 

SqueezeNext architecture was built out of the basic block 

illustrated in the Figure 2 (right), which are arranged in a 

structural form of two block structures, represented in Figure 3. 

(left) and (right). There is another difference here from the 

original SqueezeNext architecture, both DNN models 

developed with the help of the mentioned below basic blocks 

(Figure 2.) were implemented on Pytorch framework instead 

of Caffe.  
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Figure 2. (Left) Basic block for baseline SqueezeNext, (Right) Modified SqueezeNext basic block. 

 

Figure 3. (Left) Modified SqueezeNext first block structure, (Right) Modified SqueezeNext second block structure. 

Figure 2. (right) illustrates the fundamental basic building 

block for the Modified SqueezeNext trained and tested on 

Cifar-10 from scratch implemented in Pytorch framework. It 

consists of convolution (1x1), regular batch normalization and 

ReLU (in-place) layers excluding the scaling layer.  

In Figure 3, initially, both block structures (left & right) 

begin with an output of input data being fed into the Figure 2. 

right basic block (Modified SqueezeNext basic block) which 

further fed the input to the max pooling layer. The block 

structure on the right, depicts the first individual initial blocks 

implementation of the four-stage configuration. It represents, 

the first dark blue, blue, orange and the last yellow block of 

the four-stage configuration.  

The block structure on the left, forms each of the remaining 

blocks of the four-stage configuration of the Modified 

SqueezeNext. For the fair and unbiased comparison with the 

proposed architecture, all the architectures are trained and 

tested in Pytorch only with datasets such as CIFAR-100 and 

CIFAR-10, respectively. 

2.4. Architecture Tuning 

A recently introduced optimizer and some other activation 

functions [4] had been used for experiments on the proposed 

Shallow SqueezeNext Architecture, further, fine tuning and 

tweaking the proposed architecture. 

2.4.1. Adabound 

Adabound [12], a newly introduced optimizer which 

employs bounds on their learning rates dynamically and 

achieving a transition. It shows good results with the benefits 

of adaptive methods. The lower and upper bound of it will 

adjust after running the CNN/DNN for several epochs (in 

proposed architecture case it was between 60 to 90 epochs) so 

that it transforms from Adam to SGD. The default 

hyperparameters for it are learning rate of 0.001, beta1 = 0.9 

and beta2 = 0.999. It was seen that the optimizers such as 

adagrad, adam, and rmsgrad seem to perform better in training, 

initially. When the learning rates are decayed, SGD begins to 

outperform. But, in the case of adabound, it converges fast and 

achieves a bit higher accuracy than SGD. 

2.4.2. Rectified Linear Units (ReLU) in Place 

RELU-in place is not a linear activation function layer, but 

it provides similar advantages as of ReLU, additionally with a 

better performance. It modifies the input directly without 

allocating any additional output. It is observed to save some 

amount of memory in comparison to RELU. It cannot be used 

all the time as it needs a valid operation or valid use case. 

2.4.3. Exponential Linear Units (ELU) in Place 

ELU is an activation function, converging to zero cost faster 
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and then, producing better and more accurate results. The 

curve for this activation function will smooth over time, 

slowly. It also has another special operation case, that is, ELU 

(in-place). All in-place are observed to save memory, further 

not allocating any additional outputs which is huge benefactor 

for a CNN/DNN model. 

2.4.4. BlueBox2.0 by NXP 

Bluebox2.0 [19] is the second version of real time 

deployment platform for autonomous driving applications. It 

provides automotive reliability, functional safety, and freedom 

to implement the algorithms on frameworks such as Pytorch, 

TensorFlow and Keras. The recent edition of bluebox2.0 

incorporates three essential components are S32V234 (vision 

processor), LS2084A (embedded compute processor), and 

S32R27 (radar). It is operated with the help of Linux BSP 

image on a 16GB microSD card. 

 

Figure 4. Shallow SqueezeNext basic block; the fundamental building block for the architecture. 

For deployment of the CNNs/DNNs or the proposed 

Shallow SqueezeNext architecture it makes use of RTMaps 

framework [19], another tool used with bluebox2.0 for the 

architecture deployment. 

RTMaps: Real-time Multisensor applications is easy to use, 

efficient and robust real-time embedded systems. It is 

designed for developing multimodal based applications, 

testing, benchmarking, validation, and execution. It consists 

of four key modules that are RTMaps Runtime Engine, 

RTMaps Component Library, RTMaps Studio, RTMaps 

Embedded. The connection between the computer running 

RTMaps and the remote studio RTMaps on bluebox2.0 can be 

accessed via a static TCP/IP connection. 

 

Figure 5. Shallow SqueezeNext connection between a PC and bluebox2.0 

real-time platform with the help of RTMaps via TCP/IP. 

Architecture Deployment: To deploy a Pytorch code with 

the help of RTMaps for bluebox2.0, it must consist of three 

key functions to make it work in RTMaps. Three function 

definitions are birth (), core (), and death () [16, 19]. Pytorch 

deployment with the help of RTMaps on bluebox2.0 for the 

Shallow SqueezeNext architecture is shown in Figure 4. The 

connection between the RTMaps studio with remote 

connection to embedded platform on a PC and real-time 

platform with Ubuntu BSP image, bluebox2.0 by NXP can 

accessed via TCP/IP, illustrated in Figure 5. 

3. Shallow SqueezeNext  

Shallow SqueezeNext architecture is a shallow (refers to not too 

deep or small DNN models) and compact DNN architecture. The 

motivational architectures behind this proposed architecture were 

SqueezeNext [2], SqueezeNet [1], and MobileNet [3] architectures. 

During the research, another architecture was developed for better 

accuracy with model size tradeoff, that is basically a deeper or 

more comprehensive version of it, High Performance 

SqueezeNext [17]. Shallow SqueezeNext architecture is made up 

of bottleneck modules [2] further, consisting of the basic blocks 

mentioned below in Figure 6. These basic blocks are arranged in a 

four-stage configuration implementation (Figure 7.) followed by a 

spatial resolution layer, dropout layer with probability; p equal to 

0.3, average pooling, and a fully connected layer. 

 

Figure 6. Fundamental basic block for Shallow SqueezeNext architecture. 
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Figure 7. Architecture illustration for the proposed Shallow SqueezeNext. 

It is based on the following important strategies: 

1) Managing depth and width scaling with resolution and 

width multipliers. 

2) Use of only in-place operations in all layers except in 

the layers where we have a gradient change operation. 

Carefully, placing it between ELU in-place and batch 

normalization layer (Figure 6). 

3) Incorporating an element-wise addition skip connection 

to avoid vanishing gradient problem. 

4) Addition of a drop out layer at the end of four stage 

configuration after the average pooling layer. 

5) Reduction of max-pooling layers and replacing them 

with average pooling layers. As observed in Figure 7, 

average pooling layer after drop-out layer. 

The architecture implements the strategy of training and 

testing different optimizers. Figure 6. represents the basic 

block which is the fundamental building for the architecture 

with following layers convolution (1x1), ELU (in-place) [13], 

and batch normalization. Shallow SqueezeNext basic blocks 

together form bottleneck modules, illustrated in Figure 8. 

(left), these bottleneck modules are arranged in a four-stage 

configuration as shown in Figure 8 (right). 

The basic blocks in Figure 6. and bottleneck modules 

four-stage configuration (Figure 8.) together combines to 

build and form the proposed DNN architecture, Shallow 

SqueezeNext architecture (Figure 7). Figure 8. (left) 

illustrates bottleneck module made from basic block (refer 

Figure 6.) combined with different types of convolution 

layers specifically, such as, 1x1, 3x1, and 1x3 convolutions, 

respectively. 

Figure 8. (right) illustrates the detailed proposed Shallow 

SqueezeNext with (1 2 8 1) four-stage configuration 

depicting bottleneck modules representing one grey colored 

bottleneck module in first stage, two blue colored bottleneck 

modules in second stage, four orange colored bottleneck 

modules in third stage and finally, one green bottleneck 

module in the fourth stage. 

 

Figure 8. (Left) Bottleneck module depicting different convolutions and skip connection, (Right) Four stage [1, 2, 8, 1] configuration implementation of 

Shallow SqueezeNext depicting the left bottleneck modules. 

3.1. Resolution Multiplier 

Resolution multiplier [3] is the first hyper-parameter used 

to reduce the computational resource usage belonging to a 

CNN/DNN. It is another important parameter which have a 

significant effect on the parameter reduction and apparently, 

effect the scaling size of the model. This is responsible for 

reduced size and parameter for the Shallow SqueezeNext 

architecture.  
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3.2. Width Multiplier 

Width multiplier [3] is the second hyper-parameter used to 

develop small, compact, and less expensive DNN models in 

terms of computation and memory resource usage. It 

develops a uniformly thin deep neural network at each layer, 

further, helping to reduce the computational expenses and 

number of parameters by a power of two of the width 

multiplier term. 

4. Results 

4.1. Shallow SqueezeNext Results 

Shallow SqueezeNext architecture was implemented with 

the approaches mentioned in the literature review section, 

leading to various number of models of the proposed 

architecture. The model size ranges from 4.2MB to a small 

size of 115KB or 0.115MB as shown in Table 3 with mostly 

model accuracy above 80% and model speed of approximately 

under 15 seconds per epoch for the experimental models. In 

the following tables, only few of the several better model’s 

results out of total 600 models or experiments are being 

discussed below. The nomenclature for the proposed Shallow 

SqueezeNext models and results from the tables within this 

section represents Shallow SqueezeNext architecture version 

name followed by resolution multiplier, and width multiplier. 

We can infer from Table 1. that a better reduced Shallow 

SqueezeNext model size is achieved that is 272KB or 0.272 

MB, (Shallow SqueezeNext-06-0.4x model) from the 

9.525MB, baseline SqueezeNext model size. Shallow 

SqueezeNext-06-0.4x model is 35x smaller than 

SqueezeNext-23-2x, 10x smaller than SqueezeNext-23-1x 

and approximately, 11x smaller than SqueezeNet v1.0 and 

SqueezeNet v1.1. 

Table 1. Comparison with baseline SqueezeNet architecture and baseline SqueezeNext architecture. 

Model Accuracy% Model Size (MB) Model speed (sec) 

Baseline SqueezeNet-v1.0 79.59 3.013 04 

SqueezeNet-v1.1 77.55 2.961 04 

Baseline SqueezeNext-23-1x 87.15 2.586 19 

SqueezeNext-23-2x 90.48 9.525 22 

Shallow SqueezeNext-14-1.5x 91.41 8.720 22 

Shallow SqueezeNext-21-0.2x 90.29 1.814 27 

Shallow SqueezeNext-12-1.0x 88.46 0.504 19 

Shallow SqueezeNext-06-0.4x 81.97 0.272 04 

Shallow SqueezeNext-06-0.2x 81.86 0.273 04 

+All results are 3 average runs implemented along with SGD optimizer with Nesterov plus momentum and LR equal to 0.01 

Implementation of in-place activation functions, 

elimination of the extra max-pooling layers and with the 

introduction of the suitable resolution and width multipliers 

made the proposed architecture more compact, efficient, and 

flexible. With the change of resolution and width multiplier, 

the proposed Shallow SqueezeNext architecture can be 

deployed with better accuracy but with a trade-off of memory 

size and memory speed. Shallow SqueezeNext 

hyperparameters for each variation of model was saved with a 

Pytorch function, save (). The checkpoint is then, loaded with 

the help of Pytoch function, load () which is subsequently 

utilized for the training the architecture. This step of saving 

and loading the checkpoint is critical for the success of the 

Shallow SqueezeNext because not all hyper-parameters are 

saved and loaded but just the important ones. The generated 

model checkpoint file size is used to determine the model size 

and final average accuracy. This checkpoint file is again 

utilized for the testing Shallow SqueezeNext architecture 

deployment on Bluebox2.0 by NXP [11, 16]. 

Table 2. Different resolution multipliers implemented on Shallow SqueezeNext [16, 18]. 

Model Acc.% Mod. Size (MB) Mod. Speed (seconds) Resol (R) 

Shallow SqueezeNext-06-0.2x 82.47 0.296 13 1111 

Shallow SqueezeNext-06-2x 89.35 4.210 21 1111 

Shallow SqueezeNext-08-2x 77.48 2.961 04 1221 

Shallow SqueezeNext-10-1x 87.63 2.560 23 1331 

Shallow SqueezeNext-12-2x 87.96 2.563 19 1441 

Shallow SqueezeNext-14-1x 82.44 0.370 07 1551 

Shallow SqueezeNext-14-1.5x 91.41 8.720 22 1281 

Shallow SqueezeNext-16-1x 82.86 1.240 08 1661 

Shallow SqueezeNext-21-0.2x 90.29 1.814 27 2 2 14 1 

*Acc. – Accuracy; Mod. Size – Model Size; Mod. Speed – Model Speed; Resol- Resolution multiplier for each of four-stage configuration. 
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Table 3. Different width multipliers implemented with Shallow SqueezeNext [16, 18]. 

Model Acc.% Size (MB) Speed (sec) Width (x) W 

Shallow SqueezeNext-06-0.125x 66.4 0.115 07 0.125 

Shallow SqueezeNext-06-0.15x 72.2 0.141 08 0.150 

Shallow SqueezeNext-06-0.2x 82.5 0.296 13 0.200 

Shallow SqueezeNext-06-0.3x 77.9 0.196 08 0.300 

Shallow SqueezeNext-12-0.4x 87.3 0.485 13 0.400 

Shallow SqueezeNext-14-0.5x 89.0 0.772 17 0.500 

Shallow SqueezeNext-06-0.6x 84.6 0.480 10 0.600 

Shallow SqueezeNext-07-0.7x 88.1 0.704 12 0.700 

Shallow SqueezeNext-06-0.8x 87.7 0.774 12 0.800 

Shallow SqueezeNext-06-0.9x 86.3 0.950 12 0.900 

Shallow SqueezeNext-12-1.0x 88.5 0.504 19 1.000 

Shallow SqueezeNext-06-1.5x 82.5 2.442 17 1.500 

Shallow SqueezeNext-06-2.0x 89.4 4.201 21 2.000 

+Acc. – Accuracy; Size – Model Size; Speed – Model Speed; Width- Width times multiplication for each of the four-stage configuration. 

Table 4. Different dropout layer probabilities with Shallow SqueezeNext [16, 18]. 

Model Acc.% Mod. Size (MB) Mod. Speed (sec) Dropout (p) 

Shallow SqueezeNext-06-0.2x-v1 80.82 0.273 04 0.1 

Shallow SqueezeNext-06-0.2x-v1 81.44 0.273 04 0.2 

Shallow SqueezeNext-06-0.2x-v1 81.87 0.273 04 0.3 

Shallow SqueezeNext-06-0.2x-v1 81.86 0.273 04 0.4 

Shallow SqueezeNext-06-0.2x-v1 81.70 0.273 04 0.5 

+Acc. – Accuracy; Mod. Size – Model Size; Mod. Speed – Model Speed; Drop out (p)- Resolution multiplier for each of four-stage configuration. 

The benefit of this proposed architecture is that it can be 

readily implemented on real-time systems, BlueBox2.0 by 

NXP [16, 19] with limited memory with the help of dropout 

layer [6]. Table 4. illustrates the results attained with the 

different values of dropout layer probabilities for Shallow 

SqueezeNext justifying dropout with probability value, p = 0.3 

or 0.4 is a better default value for the proposed architecture. 

Table 5. represents the additional results for the Shallow 

SqueezeNext [9]. 

Table 5. Additional results for Shallow SqueezeNext with CIFAR-10 [16, 18]. 

Model Acc.% Mod. Size (MB) Mod. Speed (sec) R, W 

Shallow SqueezeNext-14-1.5x-v1 91.41 8.720 22 1281, 1.5x 

Shallow SqueezeNext-21-0.2x-v1 90.27 1.8.14 27 2 2 14 1, 0.2 

Shallow SqueezeNext-06-0.575x-v1 81.80 0.449 06 1111,0.575 

Shallow SqueezeNext-06-0.4x-v1 81.97 0.272 09 1111,0.4 

Shallow SqueezeNext-09-0.5x-v1 87.73 0.531 11 1141,0.5 

+Acc. – Accuracy; Mod. Size – Model Size; Mod. Speed – Model Speed; R, W- Resolution multiplier, Width multiplier for each of four-stage configuration. 

Table 6. Shallow SqueezeNext Results trained and tested with CIFAR-100 from scratch [16, 18]. 

Model Acc.% Size (MB) Speed (sec) Optimizer (x) 

Shallow SqueezeNext-14-1.0x 66.12 6.90 20 Adabound 

Shallow SqueezeNext-09-0.5x 58.27 1.40 11 Adam 

Shallow SqueezeNext-09-0.5x 33.73 1.40 13 Adamax 

Shallow SqueezeNext-09-0.5x 77.9 1.00 09 Adagrad 

Shallow SqueezeNext-09-0.5x 87.3 1.40 12 Adabound 

Shallow SqueezeNext-09-0.5x 89.0 1.40 12 Adadelta 

Shallow SqueezeNext-09-0.5x 84.6 1.00 09 ASGD 

Shallow SqueezeNext-09-0.5x 88.1 1.40 11 RMSprop 

Shallow SqueezeNext-09-0.5x 87.7 1.40 25 Rprop 

Shallow SqueezeNext-09-0.5x 89.4 1.10 08 SGD with momentum and nestrov 

+Acc. – Accuracy; Size – Model Size; Speed – Model Speed; Optimizer- Optimizer implemented with the proposed architecture. 
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(a) 

 

(b) 

 

(c) 

Figure 9. (a) SqueezeNet accuracy baseline architecture, (b) SqueezeNext accuracy baseline architecture, (c) Shallow SqueezeNext accuracy proposed. 
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In Table 6, all results have a unique behavior illustrating the 

effect of different optimizers [7] and ELU [13] 

implementation on the proposed architecture. 

Also, from the above-mentioned tables the inference can be 

that deep residual layer [4, 8, 13, 15] effects the tradeoff 

between model accuracy, model speed, and size of the proposed 

Shallow SqueezeNext architecture. Figure 9. (a-c) illustrates 

the baseline SqueezeNet, baseline SqueezeNext and the 

proposed architecture Shallow SqueezeNext accuracies trained 

on the CIFAR-10 dataset. The graph comparison between the 

Figures 9 (a), (b) & (c) illustrates, less overfitting in Figure 9 (c) 

depicted by the empty space or gap between training and 

validation curve in comparison to (a) & (c). These curves 

approach to 1.0 quickly. This validates the proposed 

architecture performs better in terms of model parameters 

(model accuracy, model speed and model size) than the 

SqueezeNext and SqueezeNet baseline model which is trained 

and tested from scratch on CIFAR-10 and CIFAR-100 datasets. 

4.2. Bluebox2.0 Implementation Results 

The Shallow SqueezeNext architecture is finally deployed 

on bluebox2.0 by NXP to verify and validate the efficiency 

and integrity of the Shallow SqueezeNext architecture [16]. 

The Pytorch generated checkpoint files were trained on 

datasets such as CIFAR-100 and CIFAR-10 with the help of 

RTX 2080ti GPU and then, deployed and tested on bluebox2.0 

by NXP. The deployment of the Shallow SqueezeNext is 

shown in Figure 4. The result comparison of the Shallow 

SqueezeNext is shown below in Table 7.  

Figure 10. illustrates the Shallow SqueezeNext deployment 

results attained by training the architecture on RTX 2080ti 

GPU with CIFAR-10 dataset from scratch and test the 

architecture by deploying it with the help of RTMaps on a 

real-time development platform, bluebox2.0 by NXP. 

Table 7. Bluebox2.0 deployment results for Shallow SqueezeNext [16, 18]. 

Model Acc.% Mod. Size (MB) Mod. Speed (sec) 

Squeezed CNN (SqueezeNet implementation) 79.30 12.9 11 

Shallow SqueezeNext-14-1.5x 90.50 8.72 22 

Shallow SqueezeNext-06-0.575x 81.50 0.449 06 

Shallow SqueezeNext-09-0.5 87.30 0.531 11 

 

Figure 10. Shallow SqueezeNext deployment on real time platform Bluebox2.0. 

5. Conclusion 

In this paper, based on the insights from the existing 

CNNs/DNNs and methods such as fine hyperparameter tuning 

(refers to implementation of different optimizer with step size 

decay learning rate scheduling, using momentum and nestrov 

with SGD optimizer, tuning the parameters for normalization 
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and data preprocessing), training the proposed architecture 

from scratch with no transfer learning, using comparatively 

small datasets, and architecture modifications the proposed 

Shallow SqueezeNext architecture is introduced. It further, 

explores the DSE of CNNs, optimizing it with the help of all 

the different activation functions, in-place functions, 

introduction of ELUs and optimizers. Shallow SqueezeNext 

has 120x fewer parameters than AlexNet architecture and 

achieved a reduced, 0.5MB model size. It has further, 600x 

smaller model size than AlexNet architecture without 

compression. The results show the tradeoff between the 

proposed model speed, size, and accuracy. About different 

optimizers, SGD and Adabound optimizers outperformed 

their counterparts. With a minimum model size of 0.272MB 

and model accuracy 81.97% it is expected to be deployed 

efficiently on ADAS applications. The deployment results for 

Shallow SqueezeNext trained and tested on Cifar-10 attained a 

model accuracy of 90.50%, 8.72 MB model size and 22 

seconds per epoch model speed. Additionally, another model 

variation of Shallow SqueezeNext achieved a reduced model 

size of 0.531 MB with 87.30% model accuracy. In the research, 

the focus is laid on DSE of DNNs, hyper-parameter optimizer, 

training and testing the Shallow SqueezeNext architecture 

from scratch without any transfer learning in contrast to the 

conventional approach.  
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